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ABSTRACT 

The main goal of this paper is to complete the classification of those first-order 
theories such that lf,,,(A, T)= 2 '. We introduce two notions, the dimensional 
order property and deepness. Our main theorem asserts that for a superstable 
theory T, l~,0(;t, T) = 2 * itt T has the dimensional order property or is deep. In a 
sense made precise m w this provides a syntactical characterization of theories 
with the maximum number of N.-saturated models in each power. 

Introduction 

We deal with the number  I~,o(N~, T)  of non- isomorphic  N~-saturated models  

of a comple te  first-order theory  T of cardinali ty N~. (Note that  for No-categorical 

countable  T, every model  of T is N~-saturated:** N~-saturation is a slight 

s t rengthening of No-saturated, deno ted  by Ff, o-Saturation. ) For  this we cont inue  

the classification of  first-order theories (see [4]) in t roducing the dop  (dimen- 

sional order  proper ty)  and deepness.  

We conclude that ei ther  I g o ( N ~ , T ) ~ 2  "~ for every N ~ = > A ( T ) + N ]  or 

I~,o(No, T )  <- %(I T p)(I a I+ No) for every a ( r emember  that  6 (I T I) < (21T,)+). 

As the name indicates, the au thor  feels that  this essentially solves the 

classification p rob lem for N~-saturated models  (of first-order theories). The  main 

results were announced  in [3] and [4]. 

We deal also with the number  of models  no one elementar i ly  embeddab le  into 

another .  So we advance  our  knowledge  on I(N~, T)  (the number  of models  of T 

of  power  N~), and, we think, help to deal with classes which do not  strictly fall 
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" But any such T, if it is superstable without the dop, then by the work of Cherlin, Harrington 
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proof of 3.2, we prove that for every b E M~, l(rl)+ R[tp(b,N~), L, oo] <= R[x = x,L, oo]). 
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into our context. We end by introducing and writing down some properties of 

trivial types. 

w Notation and preliminaries 

Our notation is from [4], and as we refer to it often we omit the [4] (so 4.1 

means 4.1 in this paper, III 4.1 means [4] III 4.1). The following lemmas are just 

corollaries to [4] (1.1-1.4 to V w 1.7 to IV), however 1.1-1.4 will be used often 

in sections 3, 4, 5 and 1.5, 1.6 will be used only for proving the equivalences 

between various definitions of the dop in w and 1.7 will be used in section 5. 

One deviation from the notation of [4]: I, J are sets of sequences from (~, l, J are 

sets of indexes (ordered sets, or trees or sets of sequences of ordinals, usually). 

(Hyp) In this section T will be stable. 

1.1. CLAIM. I rA  C_ B~ (1 = 0,1), tp(B1,Bo) does not fork over A, p E Sm(Bo) is 

orthogonal to A, then it is orthogonal to BI. 

PROOF. W.l.o.g. we work in ~eq and w.l.o.g. B~ = aclB,  A = aclA. Choose 

any q E S(BO. Construct an infinite indiscernible set I of elements realizing q 

such that tp.(l, B0 U B1) does not fork over B~ and Av( l , l )  is a stationarization 

of q. Similarly choose a set ./ of indiscernibles over Bo realizing p. Since 

tp.(l, Bo U BI) does not fork over B~, and tp(B~ ,B0) does not fork over A, by III 

0.1 tp,(B~ U l, Bo) does not fork over A, hence tp,(LBo) does not fork over A. 

As p ~ S'~(Bo) is orthogonal to A by V 1.5(1) tp,(J, Bo) is orthogonal to A. 

Hence tp.(J, Bo), tp.(I, Bo) are orthogonal, hence by V 1.2(1) (since we work in 
~q) weakly orthogonal, hence by V 2.7 Av(l, to I), Av(J, U J)  are orthogonal, so 

p,q are orthogonal. 

1.2. DEFINITION. F o r A  C B C C w e s a y B < A C i f f f o r e v e r y g ~ C ,  tp(~,B) 

is orthogonal to A. 

1.3. LEMMA. (1) Let N C M C A ,  M < N A ,  M and N are Fa-saturated, 

K >= K,(T) and M'  is F"~-prime over A, then M < ~ M ' .  

(2) If  B <a C, A C Ao, B C Bo, Ao C Bo C Co, Co = C tO Bo, tp, (C, Ao) does 

not fork over A,  and tp,(C, Bo) does not fork over B, then Bo<aoCo. 

PROOF. (1) By V 3.2 and V 1.2(3). 

(2) By 1.1 it is easy. 

1.4 CLAIM. Let K >= K,(T). If  N is F:-saturated, p ~ S ' ( B )  is regular, statio- 

nary, not orthogonal to N, then p is not orthogonal to some regular q ~ S " (N). 
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PROOF. W.l.o.g. p E Sin(M), N_C M and M is F~-saturated. Let C _C M, 

I C[ < K, p does not fork over C, p r C stationary. Let A _C N, [A I < K, tp,(C, N) 
does not fork over A, t p , (C ,A)  stationary. 

Choose by induction on i < to elementary mappings ~, Dom~ = A U C, 

f, tA  = id, s t p , ~ ( C ) , A ) - s t p , ( C , A ) ,  and fo = id, Rang(f,)_C N, and for i < to, 

i _-> 2, t p , ~ ( C ) ,  M 12 U j<,~(C)) does not fork over A. 
Let p, = ~ ( p r ( A  tJ C)). 

Clearly for i < j ,  p~ is orthogonal to Pi itt po is orthogonal to p~ (by 
indiscernability). 

Extend the domain of f2 to N 12 C by fixing N - C  By V 3.4, po,p2 are not 

orthogonal (Po , f, ]:(p ), A , B  there, stand for po,f2,p2, N, N U C here). Hence 
po,pt are not orthogonal, so p is parallel to po, not orthogonal to pt, parallel to 
the stationarization q of pl in S"(N),  q regular. So we finish. 

1.5. DEFInITIOn. Let A C B ,  p E S m ( B ) ,  then we say that p is almost 

orthogonal to A if for every E, s.t. tp(6,B) does not fork over A and every/~ 
realizing p, tp(b,B 12 E) does not fork over B. 

1.6. CLAIM. (1) Let A C_B, then tp(b,B) is almost orthogonal to A iff 
tp(/~,aclB) is orthogonal to aclA if tp(b,B)  is orthogonal to A. 

(2) If  A C_ B, p = tp(/~,B), then p is almost orthogonal to A iff for any E, 

tp(E,B) does not [ork over A implies stp(/~,B)Fstp(/~,B U ~) itt for any C, 
tp . (C ,B)  does not [ork over A implies stp(&B)Fstp(ti ,  B 12 C). 

(3) Let A C_ B, p = tp(/~,B), then p is almost orthogonal to A itt for every & 
tp(a, B) does not fork over A implies tp(ti, B 12 b) does not fork over A. 

(4) For every ~, tp(ti, B)  does not [ork over A implies tp(/~,B)Ftp(/~,B 12 ti) itt 
tp(/~,B) is almost orthogonal to A and in ~~ tp(G,B)Ftp(/~,B U acl A).  

(5) I r A  =IMIC_B, M is F~-saturated, p E Sm(B) is F~-isolated, A >=K,(':), 
then p is almost orthogonal to A. 

(6) I[ A =IMI_CB, M is F'rsaturated (i.e. A-compact), p E S" (B)  is F'~- 

isolated, then p is almost orthogonal to A. 

1.7. CLAIM. I f N i s  F~-prime over O, A _-> K,(T), IA I< A, cfA - r (T)  and M 

is F~-prime over N U A, then M is F~-prime over 0 .  

PROOF. We concentrate on the case A =N0, so A =ti .  W.l.o.g. M is 

F~-constructible over N U A. By IV 4.9(3), IV 4.10(2), IV 4.18 we can find I C_ N, 
I an infinite indiscernible set, Av (I, N)  = tp (ti, N), and Av (I, U I )  ~- Av (I, N). 

Now JJlJJ = A as N is F~-prime over O (see IV 4.9(2)). By IV 4.18, N is F~-prime 

over U .I, and by IV 4.10(2) F~-constructible over ILJ{ti}. Hence M is 
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F~-constructible over I t3 {ti}, but as [ ItA {ti}[ = A, I t_J {ti} is F~-constructible over 

0 .  Hence M is F~-constructible over 0 ,  hence M is F~,-prime over O. 

1.8. DEFINITION. (1) I(A,F, T) is the number of F-saturated models of T of 

power h, up to isomorphism. If F = F :  we write I : (h,  T). 

(2) IE()t,F,T) is the maximal number of pairwise nonelementarily embed- 

dable F-saturated models of T of power h. If a maximum is not obtained, and 

the supremum is a limit cardinal p., we write the value as /z- .  If F = F~ we write 

IE',(A, T). We omit h if we do not restrict the cardinality (so the value may be o0 

o r  or 

w The dimensional order property 

(Hyp) In this section T will be stable and K be Kr(T). 

Remember that T is unstable iff it has the order property, and unstable 

theories are complicated in some respects, e.g., they have many non-isomorphic 

models. However, a stable T may have an order hidden in it. For example, 

consider for h > X0, A C_ h 2, the theory T of the model (B, FI, F2) where 

B = h U {(a,/3,7): a,/3, y < A, and (a,[3)EA ~ 7 < to}, 

V,(a)=a,  V,((a, fl, 7))=a,  F2(a)=a, V2((a,[3, y))=fl.  

Clearly T is not only stable, but even N0-stable, and N0-categorical; however, by 

cardinality quantifiers we can define an order (if A is an order). 

We shall consider here a property, which clearly means there is a hidden order 

property. From later sections we can see that for T superstable and F~,o- 

saturated models it is the only one. Note that here the order and independence 

properties coincide. 

2.1. DEFINITION. T has the dimensional order property (dop in short) if there 

are models Mt (l = 0,1,2), each F$-saturated, Mo C_ M1,M2, and {M1,M2} is 

independent over Mo, and the F~-prime model over M1 U M2 is not F:-minimal 

over M1 U M2. 

In this section we first develop a number of equivalent forms of the 

dimensional order property. These are summarized in Lemma 2.4. Condition 

2.4 (d), 0 is the form of the dimensional order property used in Theorem 2.5 to 

show that if a superstable T has dop then I~,o(T, h ) = 2 ~ (whe~ T is stable in h). 

2.2. LEMMA. Let Mo < M1, Mz, each M~ F~-saturated, )t >= Ix >- K, {M~, M2} 
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independent over Mo, M F~-atomic over M~ tO M2 and M is F~-saturated. Then the 

following conditions are equivalent: 

(a) M is not F~-minimal over M~ tO M2. 

(b) There is an infinite indiscernible I C M over M~ U M:. 

(c) There is p ~ S m (M) orthogonal to M1 and to M2, p not algebraic. 

(d) There is an infinite I C M indiscernible over M~ U M2 such that Av(/ ,  M) is 

orthogonal to M, and M2. Hence by 1.6(5), tp , (LM,  tO M2) is almost orthogonal 

to M, and to M2. 

PROOF. The equivalence of (a) and (b) is the content of IV 4.21, and 

(d) ~ (b),(c) are trivial; we now prove (b) ~ (d), (c) f f  (d). The "hence" in (d) 
can be proved as in the proof of (c) ~ (d). 

(b) f f  (d). We can assume II[ = I~,,, and suppose 1C_ M is indiscernible over 

M~ tO M2 but not orthogonal to.Mj (by symmetry). So by definition, A v ( / , l )  is 

not orthogonal to some r E S ' (M1) .  

Let I = J U { & ,  :n <to}, I J [ < r ,  A v ( l , l )  does not fork over J, A v ( L J )  is 

stationary, and let {/~, :n < to} be an independent set over (M1 tO M2 U I, MO of 

sequences realizing r (hence indiscernible over M~ U M2 tO I). By V 2.7 for some 

k, tp(bo^'..^/~k,M~ U M 2 U J ) ,  tp(tio^...^~ik,M~ UM2UJ) are not weakly or- 
thogonal. 

As M is F~,-atomic over M~UM2, for some B ~ C M I U M 2 ,  IB~l<p.,  

tp,(l ' ,B~)Ftp,(l ' ,M~ U M2) where I ' =  J U{~i~ :l _-< k}. Hence for some C _C 

M~UM2, I C l < ~ o ,  tp(/~o^..-^/~k, B ~ U C U J ) a n d  tp (~o^ . . . ^dk ,B~UCUJ)  

are not weakly orthogonal. Now tp(/~o ̂ . . .  ^/~, M~ U M2 U J )  does not fork over 

M~ (by the choice of the /~'s) and M~ is FZ-saturated and I B~ u C u J I<  

/z +1~o+~o =/z, so some t%^.-. ^ t~ ~ M ,  realizes tp(/~o^... ^/~,B, U C U d )  (see 

III 0.1). So tp(~io ̂ .. .^ ~ik,B~ U C U J), tp(~o ̂ . .- ^ t?~,B, U C U J )  are not weakly 
orthogonal, hence 

tp (rio . . . .  ^ ~i~, B~ U C U J )  ~" tp (~io ̂ - . .^ ti~, B~ U C U J U Eo . . . .  ^ ?~ ), 

hence (by Ax V2 for FL) tp , ( l ' ,  B1 U C ) J  tp , ( l ' ,  B1 U C 13 (~o ̂ . . .  ^~k)), hence 

by monotonicity tp , ( I ' ,  B~))/tp(l ' ,  M~ U M2) contradicting the choice of Bx. 

(c) f f  (d). So let r E S " ( M )  be (not algebraic) and orthogonal to M, ,M2.  It 

suffices to prove that r[(B U M~ U M2) is realized in M for every B C M ,  

[ B I < r. [This is because then we can choose Bo _C M, I B01 < K, r does not fork 

over B, r [Bo stationary, and /~, E M realizing r [(Bo U {/~ : l < n} U M~ 13 M2), 
and then I = {/~, : n < to} is as required - -  indiscernible by III 1.10(1).] 
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We can, of course, increase B as long as I B J < K. So w.l.0.g, r does not fork 

over B, rrB is stationary, for l =0,1,2, tp,(B,M~) does not fork over B f)M~, 
and let g realize r, B, = B n M~. 

As I B I <  K, M is F2-saturated, it suffices to prove 

stp(~, B) F r [ (B U M, U M2). 

For this let /~ E M~(l = 1,2) and it suffices to prove: 

stp(&B) F r t(B U bl U b2)  o 

We can find CC_Mo, ICI< K such that tp(/~,MoU B~) does not fork over 

B~UC for !=1 ,2 .  

Now tp,(B, M0) does not fork over B OMo=Bo and C C_Mo so 
tp,(B, Bo U C) does not fork over Bo. By symmetry, tp,(C, Bo U B) = tp,(C,B) 

does not fork over B0. Extend tp,(C,B) to a type q over M which does not fork 

over B0. Then q t M, is orthogonal to r and parallel to stp,(C, B) so by V 1.2(4), 

stp,(C,B) is orthogonal to r. Hence, 

(1) stp,(GB)l-stp,(~,B U C). 

Now tp(/~, U B~,M2) does not fork over M0 [as it is _Ctp,(M,,M2)] hence 

stp,(G~,M2 U B~) does not fork over MoU B,. Also tp(G~,MoU B1) does not 

fork over B~ U C by the choice of C, hence by III 0.1 (2), tp(/~ ,M2 U B,) does 

not fork over B~ U C. Now B~ U C _C iV/,, B~ U C _C B U C C M2 U B, hence 

stp,(/~,, C IJ B) is parallel to some complete type over M1, hence is orthogonal 

to r, hence to stp,(E, C U B). So 

(2) stp,(E, C U B) F stp,(~, C U B I.J/~,). 

Now tp,(/~2 U B2,M1) does not fork over Mo [as it is _C tp,(M2,M,)], hence 
tp(/~2, M~ U B2) does not fork over Mo U B2. 

Also tp(/~2,MoUB2) does not fork over B2UC (by C's choice), hence 
tp(/~2,M~UB2) does not fork over B2U C. As B:U C C_M2, and B2U C_C 
B U C U/~, C_ M~ tJ B, clearly stp (/~2, C U B U/~) is parallel to some complete 

type over M2 hence is orthogonal to r, hence to stp(E, C U B). So 

(3) stp (E, C U B O bl) ~- stp (~Y, C U B U/~ U/~2). 

By (1), (2), (3) clearly 

(4) stp(E,B) F stp((,B O/~ U/~2) 

which, as mentioned above, is sufficient. 
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2.3. CLAIM. Suppose )t >=x, All (1 =0 ,1 ,2 )  are F~-saturated, Mo< M1,M2, 

and {M1,M2} is independent over Mo. Then 

(1) Every F]-isolated p E S'~(M~ U M2) is F~-isolated. 

(2) A model M is F~-atomic over M1 U M2 if[ it is F~-atomic over M, U M2. 

< F~-prime model M over M1 U M2 is F~-minimal, Hence if K <= tz, X = A, and an 
then M is F~-prime over M, U M2 (and F~-minimal). 

PROOF. (1) Suppose B C M~ U M2, IBI< A, ~ realizes p and s tp (~ ,B)Fp  = 

tp(6,Ml U M2). We can assume that tp,(B, Mo) does not fork over B fq Mo. 

Let C _C B,[ C[ < r be such that p does not fork over C, tp,(C, Mo) does not 

fork over C N Mo. Now by III 4.22 it suffices to prove: 

(*) for any ~ E M ~ t o M 2 ,  there is a ' E M I U M 2  such that stp(~i ' ,B) is a 

stationarization of stp(& C) 

We can find A C Mo such that tp,(ti U C, Mo) does not fork over A, its 

restriction to A is stationary, IA I< r, and let ~i = ~L ̂  ~i2, ti~ E M~ (l = 1,2). Let 

A ={a,: i<i(O)} ,  and we can find a~EMo, such that stp,((a'~:i<i(O)>, 

B fq Mo) extends stp,((a~ : i < i(0)>, C A Mo) and does not fork over C A Mo, 

hence over C. Now find ti~ E M~ such that stp,((a~ : i < i(0)> ̂  ti~,B) extends 

stp,((a~:i  <i(0)>^t%,C) and does not fork over C. It is easy to check that 

t i ' =  ti'~ ̂  ~i~ is as required. 

(2) trivial from (1). 

2.4. LEMMA. The following properties of T are equivalent for A >= X >= r : 

(a) T has the dop ( = dimensional order property). 

(b)~.x There are F~,-saturated models Mo,M~,M2, Mo< M1,M2, {M~,M2} 

independent over Mo, such that the F~-prime model M3 over M~ U M2 is not 
F~-minimal. 

(c)~.x There are F~-saturated models Mo,M~,M2,Mo < Ma,M2,{M~,M2} inde- 

pendent over Mo, and there is an F~-atomic non-F~-minimal model M3 over 

M1 U M2. 

(d)A There are sets Ao, A~, A2 such that AoC_A~, A2, IA, I<x, {A1,A2} is 

independent over Ao; and there is an infinite I indiscernible over A~ U A2, 

orthogonal to A~ and to A2, and tp , ( / ,A ,  U A2) is almost orthogonal to A1 and to 

A 2. Moreover, if ti~ (l = 0,1,2) are such that {A 1, A 2, rio} is independent over A o, 

and tp(t%,Ao U A~ to A2 tO rio U t%_~) does not fork overA~ to ~oforl = 1,2, then 

stp,(LA~ U m2) b tp , (LAl  U a~ U A2 U a2). 

We can replace ~ by B~. 
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PROOF. As (a) is (b).,. it sutfices to prove: 

(i) (c)A.x ::)' (d), ; (ii) (d)K ~ (d)x ; (iii) (d)x ~ (b)a. x ; (iv) (b)A.~ :::> (c)~.x. 

(i) (c)x.x ~ (d)K 

So let Mo,MI,M2,M3 exemplify (c)~.~. Now by 2.2(d) there is an infinite 
I C M3 indiscernible over M1 U M2 such that Av(l, M0 is orthogonal to M~ and 

to M:. First assume K >No, and w.l.o.g. I II = No. By 2.3, tp.(l,M~ U M2) 
is F~-isolated, and so for some A CM, UM2, I AI <K, with 
stp,(I ,A) I-stp.(l, M~ U M2). We can also assume that tp,(A, M0)does not fork 

over A n Mo and tp.(A,A n Mo) is stationary. Let At = A n M~. It is easy to 

check that {A~, A~} is independent over Ao (as {M1, M2} is independent over Mo, 

and use III 0.1). Clearly tp,(l,A~ U A2) is almost orthogonal to A~ and to A2, 

and even the stronger assertion in 2.4 (d) holds. 

If K = 1,1o, T is superstable and so there is a finite J C I such that Av (I, I)  does 

not fork over U J and Av( l , J )  is stationary, and continue as before with J 

instead of I noticing that tp,(l,A~ U A ~ U J )  does not fork over U J, is 

stationary, and is orthogonal to M, and to M2. 

(ii) (d). ::> (d)~ 
As K =< X, if At (l = 1,2,3), I exemplify (d),, then they exemplify (d)x. 

(iii) (d)~ �9 (b)~.~ 

Let A o , A t , A 2 , I  exemplify (d)x. 
Let Mo be an F~-saturated model of T, Ao C_ Mo. By using automorphism of 

we can assume t p , (A ,  MoUA~_~) does not fork over Ao. Next choose an 

F~-saturated M~, such that Mo U A, _C M~, tp,(M~, Mo U A~) does not fork over 

Mo, and an F~-saturated M~, such that Mo U A2 C_ M2 and tp.(M2,M~) does not 
fork over Mo (this is easy). So clearly {M~, M2} is independent over Mo, and by 

the latter part of (d)~ 

stp,(I,A~ U A2) F stp,(l, M, U Mz). 

So tp,(l, M~ U M2) is F~-isolated, so there is M4 F~-prime over M~ U M2, such 

that I _C M4. 
As M4 contains an infinite indiscernible set I over M0 U M~, it is not 

F~-minimal (by [4] IV 4.21), so we prove (b),.x. 

(iv) (b)~.x ~ (c)x.,, 

Trivial. 

2.5. THEOREM. Suppose T has the dop, T stable in h and r <-_ I-~ < h. Then T 

has 2 ~ non-isomorphic F~-saturated models of cardinality h. 
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PROOF. Let Ao ,A , ,A2 , I  be as 2.2 (d),, [ l l = No and let J be any set of 

indices. W.l.o.g. we shall work in ($~ (see [4] III w 

Let A '~ - acl A~ ; and we can define, for l = 1,2, s E J, an elementary mapping 

f~,, such that: 

(or) Domft, = A'~, 

([3) f~ r A It = the identity, 

(3') tP,(f~, (A 't), U {fk,(A ;,): (t, k) # (s, l), t E I, k E 3}) does not fork over A ~. 

Next, for every s,t E J (not necessarily distinct) we choose an elementary 

mapping f~.,, whose domain is A '~ to A ~ to I, and which extends fL f2. (This is 

possible as f~s O f2 is an elementary mapping, which is true because tp (A ~, A ~) is 

stationary (by III 6.9 (1) and the independence of {A't,A~} and of 

{f~(A~),f2,(A2)} over A~).) Let A~=ft,(A,) (so [A~[ < r) ,  L., =f,.~ (I). Now: 

/ 
(st) stp,(L.,,Al U A,2)Fstp, ~L.,, 

This holds by 2.4(d) for 

B o  = 

U A~U U A~U U L,,).  
t ~ l  v ~ !  (u ,u)#(s , t )  

U {A ~.: (v,/) # (s, 1), (t,2)} U {/~.o :{u,v} n { s , t }  = 3~},  

B~=BoUA~,U U { L . o : v # t , v ~ J } ,  

B2=BoUA2, U U{ l , . , : u#s ,  u E J } .  

Let L*, be any set indiscernible over Ats U A,  2, extending L.,, of power Ix+. 

Clearly (st) continues to hold for the l~,'s. 
Let R be any two place relation over J, and let CR = I,-J~.,A~sU URt,.,)L*.,, and 

let MR be an F~,-prime model over C~. 

It is easy to check that IJl  = A implies IIM~ I[ = ,~ (remember T is stable in )t). 

Now, using (st) we show: 

(stl) 

for s, t E J, 

there is in MR an I of power/~§ realizing tp,  (L% A~ U A,  2) ift R(s,t). 

If R(s,t) holds, clearly there is in MR an I (of power IX+) realizing 
tp , (L* ,A~UA 2" * _ = § ,).I~., itself. Suppose R(s,t) fail, I c M R , I I I  tx realizes 

2 - -  1 �9 ,UA, ) .  We shall work in (s176 If stp,(LAt, UA,)=stp, (L. , ,AsOA2,)  t p . ( L , , A  l 2 

we get an easy contradiction: by IV 4.9, dim(l, CR,M)<-ix, and by (st), 

tO A , ,  M)  which should be => ]I I = Ix + > Ix, contradic- dim (L CR, M)  = dim (I, A t 2 

sUA,) ~UA,), as tp ( / ,A  t 2 = tion. However,  if stp.(LAt, UAZ,)#stp.(L*,, A t 2 
, , A , , I  satisfies 2.4(d)~, so we can prove the tp(L*,, A~UA,~), still Ao,A t 2 

assertion corresponding to (st). 
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So in M,  the relation R on (A I U A 2: t E J) is defined; and I A ~,l < K, 3. = 3. ~ 

(as T is stable in 3., K = K,(T)). So as in VIII 3.2, we can prove that there are 2" 

pairwise non-isomorphic F~-saturated models of T of cardinality 3.. The case 

which most interests us, /x = l~0, T superstable (i.e. K(T)= 1~o), has the same 

proof as in VIII w we have just to choose the right 4> (see there). 

REMARKS. (1) For most 3. we can also get 2" such models no one elementarily 

embeddable into the other, e.g., for 3. regular > I T I ; more generally, see also 

[61. 

(2) In 2.5, if T is not stable in 3. we can still get similar results. 

For the reader unsatisfied with this, we give in more detail two cases. 

2.5A. FACT. If T has the dop X --> 3. > K, X > / z  _--> K, 3. regular, then there 

are sets A~ (i < 2') ,  each of power X, such that, letting M~ be F~,-prime over A~, 

the following holds: 

(i) The M~'s are pairwise not isomorphic. 

(ii) For i~  3, M~ is not elementarily embeddable into M s. 

(iii) For i~./,  there is no elementary mapping from A~ into Mj. 

PROOF. Let S* = {~ < 3. :cf8 = K}, and for each 6 E S let rib be an increasing 

sequence of successor ordinals of length K converging to 6. For every S C_ S* let 

Js=X2, Rs={(~, ( i ) ,3):SES,  i<K},  As=CRy, MS=MR~, 

m ' -  s -  U AIU U{I<,.~>:(i,8)ER}. 
1<2 

t Now suppose S~,S2C_ S, S~-Sz is stationary, f :As,  M~ an elementary 

mapping, and we shall eventually get a contradiction. This clearly suffices. By 

renaming, we can assume that f is into 

B=BoU{a~:i<A} whereBo=As~U I,.J A ~ i ,  

i < A 2  
/ < 2  

tp(a, ,B,)  is FT,-isolated where B, = Bo t.J {aj : j < i}. 
Let A * > 2 ~ be regular, and choose N~ < (H(A *), E ), II N~ II < 3., n 3. -- ~,, 

(Ni:j<-_i)EN~+1, and f, A',,, B, Bo, (a,:i<3.), Rs, (A~:l<2,  i<x2) ,  
(I,*, : s, t ~ Js,,) (m = 1,2) belongs to No. Choose ~ E St - $2, ~" = 6r 

Next choose M < (H(3. *), ~ ), ~ E M, M C'l K an ordinal ~, (N~ : i < 3. ) E M, 

and all the elements which we demand to be in No will be in M too. 

Now f(A~ A~U U I<~,<o.~>) gives us the desired contradiction. 



334 s. SHELAH Isr. J. Math. 

2.5B. FACT. There are q~, T] such that T _C T,, I T~ I =< ~ (T) and q~ is proper 

for (to, Tl) (see Def. VII 2.6 p. 393, and Lemma VIII 2.3) such that for every 

linear ordering I :  

(1) EM(I,4p) is F~o-Saturated. 

(2) There is a formula 

6(; ,e)=(3Xo,. . . ,x, , - . . ) ,<, .  ^ ,p,(...,X,o.,~,...,y,e), 
a t < / ~  + 

~ first order, )7, ~? of length < K, such that, for s, t @/, 

EM(L ~ ) ~  ~k[b,,b,] iff s < t 

where 

/~ = (f~(~,): i < IAj O A21 < K), and if r = N0,/~, = ti,. 

PROOF. Let J be {i:i <=~o}, where ,%==,(ITI), Is*., has power A, M'~ be 
F~-prime over U~.,A~,U U {I3 :s <t}  (so R is the natural ordering). Now 

expand M ~ by A(T) functions and get M~ such that: 

(a) For every /~ E ~, d E M, stp(/~,a) is realized in the closure of ~i by the 

functions of M~. 

(b) P = { d , : s  E J} where ~i, C_A~UA~, and if r =No then equality holds 

(i.e., the range of as is A~ and always A ~  i}. 

(c) f ( - , d s , d , )  (s < t) Is a one-to-one function from MR into Is.*,. 
(d) M~ has Skolem functions. 

Now apply Morley's proof of the omitting type theorem to get EM~(ap, to), a 
model of T~ = Th(M~), which realizes only types M~ realizes. 

From 2.5B, I~,o(A,T)=2 ~ for A - > A ( T ) + ~  follows from VIII 3.2 (for 
A > A(T) it already follows from [1], [2] 2.6). 

Remember that for T superstable, ITI+I~_-<A =<A(T), I (A ,T)=2  ~ was 
proved in IX 1.20. 

Now we shall mention a topic, not necessary for the rest of the paper, but 

naturally connected to the dop. Just as we have looked at "hidden order" we can 

look for "hidden unstability," like the one caused by K(T)> No. 

2.6. DEFINITIOr~. T has the discontinuity dimensional property (didip in 

short) in the cardinal/x (/~ regular) if there are F~-saturated models M~ (a </~)  

such that a </3 ~ M~ < M~ and the F~-prime model over U~<,,M~ is not 
F~-minimal over U~<~M~. 

Now if T has the didip for/x, then/~ < K(T) and there are 2 ~ F~-saturated 
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non-isomorphic models of power A if )t > X ~ K, T stable in k, at least when 

(V/~.l < /~. ) /~?/J< /~, cfA =A. 

The proofs are parallel to the proofs in VIII on the number of F2-saturated 

models of power A, when X < K(T) regular. 
Also, the parallel of 2.3 holds, and if X > K is singular, T does not have the 

didip for cfx, then F~-prime model over any set A is unique. Also, if each M~ is 

F~-saturated (i < a )  M < M~, {M~:i < a} is independent over M, and N is 

F~-prime over U,<,M~, and in addition T does not have the dop nor any case of 

didip, then N is FT-minimal over U~<,M~. 

w The decomposition lemma 

(Hyp) In this section T is superstable without the dimensional order property. 

The main result of this section, the decomposition lemma, states that (for 

superstable T without the dimensional order property) every F~o-Saturated 

model is F~,0-prime over a non-forking tree N~ (n E I) (i.e., I C_ ~ is closed 

under initial segments, and tp(N~, I,.J {N~ :~7;~ v}) does not fork over N~tttt~-l~, 
when l(r / )> 0, and r /<  v �9 N~ C_ N~). This is a kind of structure theorem, so 

this division line (superstable + not dop) is significant. Though we shall eventu- 

ally prove that some such theories (the deep ones, see w have many non- 

isomorphic models, all of them do not have a family of K F~,o-Saturated models 

no one elementarily embeddes into another, with K of arbitrary cardinality (this 

is with the help of [5]). Recall that for A C B C C, B <A C means that for each 

E E C, tp(~, B) is orthogonal to A. 

3.1. THE ATOMIC DECOMPOSITION LEMMA. Suppose N~ < M are F~,o-Saturated 

models. Then there are elements at ~ M (i < a ) and models N2, ~, M~ such that : 

(a) Nt < N2., < M~ < M,  

(b) M~, N2.~ are F~,o-Saturated, 

(c) tp(a, ,N 0 is regular, and for i #  j, tp(a,,N,), tp(aj,N0 are orthogonal or 

equal, 
(d) at @ N2,,, and N2., is F~o-prime over N~ U {at}, 

(e) N2,~ <N, M~, and M~ is maximal with respect to this property (in fact, for no 

a E M - M ~  is tp.(M1U{a}, N2,,) orthogonal to N1), 

(f) M is F~o-prime over U,<~ M~, 
(g) {M~:i < a }  is independent over N~, and tp . (M,  N1U{a,}) is almost 

orthogonal to Nl.  

PROOZ. Let I = {a, : i < a } C M be a maximal set, independent over N~ of 
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elements of M realizing over N1 regular types, and w.l.o.g, satisfying (c). 

Let N2.~ C M be F?,o-prime over NI U {a,-}. So (c)and (d)hold trivially. By V 
3.2, we have: 

FACt A. t p ( N z ,  Uj<o.~,,iN2.j) does not fork over N~. 

Now for each i < a ,  we define by induction on j <IIMII* an element 

bi.j ~ M - Nz j  U {b,., : 3' < j} such that tp(b~.,, N2., U {b,.~ : 3' < I}) is F~,o-isolated 
or is orthogonal to N, (we can assume that the second possibility occurs only if 

N2.~ U{b~,~:3'<j} is the universe of an F,%-prime model). There is a first 

/ 3 ( i )<  IIMII + such that b~,~to is not defined. Obviously: 

FACt B. N2,, U{b,.~ :/3 </3(i)} is the universe of an F~,o-Saturated model 
which we denote by M~ (clearly M~ < M). 

Now: 

FACt C. tp.(Mi, Uj~,iMj) does not fork over N~. 

To show Fact C, we just prove by induction on ~ ~ E~<~/3(i) that if we let 

A~=N2.~ U {b~.~ : Y.j<d3(j) +/3 <so}, then for every i < a ,  tp(A~, U j , , , A~  does 

not fork over N~. The induction step is by V 3.2, III 0.1 (when we add an element 

realizing an F?,o-isolated type) and V 1.2(3), III 0.1 (in the other case). 

FACT D. N2., <~, M~. 

We prove by induction on /3 =</3(i) that: 

(*) N2., <N, N:., U {b,., :3' </3}. 

For/3 = 0 this is trivial, as well as for/3 limit. So let us prove it for/3 + 1. Let 
tp(E, Nz~) be a type which does not fork over N~. Since N~ is F~tr~-saturated, by 
V 1.2(3) it suffices to prove that tp(E,N~.,), tp.({b,.~ :3' =</3}, N2.,) are weakly 
orthogonal, This is equivalent to 

tp(~,Nz,) F tp(~, N2., U {b,.~ : y _-</3)}). 

By the induction hypothesis on/3  

tp(E, Nz.,)F tp(~, N2., U {b~., :3' </3}). 

Hence tp(6, N2.~ U {bi,~ :3' </3}) does not fork over N2~, hence (by transitivity, 
see III 0.1) does not fork over N~, and it suffices to prove it is weakly orthogonal 

to tp(b~.~, N2.~ t3~b~.~ : 3' </3}). If the latter is F~,o-isolated this holds by V 3.2 and 
if the latter is orthogonal to N1, this holds by V 1.2(3). 
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FACT E. M is F~,o-prime and F~,o-minimal over U~<,~ M~. 

PROOF OF FACT E. Let M ' < M  be F~-prime over U,<~M, (we know that 

there is such M'). Suppose M ' ~  M which holds if M is not F~-prime over 

U~<aM~, and M'  can be chosen so that it holds if M is not F;,o-prime and 

F~,-minimal over U~<~M~; we shall eventually get a contradiction. Choose 
b ~ M -  M'  with R [tp(b,M'),  L, o0] minimal (it is < 0o as T is superstable). 

By V 3.5, tp(b ,M')  is regular. Let us first assume that tp(b ,M')  is not 

orthogonal to N~, then by 1.4 there is a regular type p E S " (N~) not orthogonal 

to it, hence by V 1.12 some b ' E  M -  M'  realizes the stationarization of p over 

M'. But this contradicts the maximality of I =  {a~ : i < a} as b' can serve as a~. 

So we can assume tp(b,M') is orthogonal to N~. Choose a set B C_ M', 

IBI<K(T)=tt0 such that tp(b ,M')  does not fork over B. Since M'  is F~, o- 

saturated we can also assume tp (b ,B)  is stationary. Also there is a finite S C_ a 

such that tp.(B, U,zsM~) is F~,o-isolated [as tp.(B, U,<aM~) is F~o-isolated by IV 

4.3 as BC_M', and M'  is F~,0-prime over U,<~M~]. So there is M*C_M' 

F~o-prime over U ~ s M i  and b ~ M  so that tp(b ,M*)  is a regular type 

orthogonal to N~. We prove that this is impossible by induction on IS I. If IS I = 0 

then tp(b ,M*)  is not orthogonal to N~ as M * =  Nt,  contradiction. If IS[ = 1, 

S = {i} we get a contradiction to the definition of M ,  Suppose IS I = n + 1 and 

assume by induction that for any U C_ a with [ U[ _-< n, if N* < M is F~,o-prime 

over U~uM~ and r E S(N*)  is a regular type which is realized in M, then r is 

not orthogonal to N~. Let i E S  and choose M+_CM *, F~,o-prime over 

Uj~sj,,~Mj such that M* is F~o-prime over M § U M~ (for some fixed i E S). By V 

3.2 {M+,M~} is independent over N~. Since T does not have dop, by 2.3, 

tp(b ,M*) is not orthogonal to one of M~ or M § Let N denote the model 

tp(b, M*)  is not orthogonal to. By Lemma 1.4 there is a regular q E S"  (N) such 

that q is not orthogonal to tp(b,M*).  But tp(b ,M*)  is orthogonal to every 

(regular) complete type over N~. Since non-orthogonality is transitive on regular 

types (V 1.13), it follows that q is orthogonal to every regular type in S(NO, i.e. 

by 1.4, q is orthogonal to N~. But q is not orthogonal to tp(b, M*) and b is in the 

F~,0-saturated model M, so by V 1.12, the stationarization of q on M* and hence 

q is realized in M*. But then q and N contradict the hypothesis of induction. 

So we prove Fact E and we can check that the only part of 3.1 to be proved is 

the last phrase of (e) which we leave to the reader. For (g) use 1.6(5), 1.6(1). 

3.2. THE DECOMPOSITION LEMMA. For any F~,o-Saturated model M we can 

find a set I C '~>[[M[[ (finite sequences of ordinals < l iMb  closed under initial 

segments, and N~, a~ for 71 E I and p~ (71 ~ I - {( )}) such that : 



338 s. SHELAH lsr. J. Math. 

(1) N~ < M is F~o-Saturated. 

(2) N< > is F~,o-prime (over 0) .  
(3) p~^<,>=tp(a~^<,>,N~) is regular, and for ~ ^ ( j ) E I ,  p~^<,>, p~^<j> are or- 

thogonal or equal. 

(4) N~^<,> is F~o-prime over N~ U {a 7̂ <,>}. 
(5) tp.(N~^<,>, U {N~ : v E I but not ~ ^(i) < v} does not fork over N. (for 

~q ̂ (i) E I). 

(6) M is F~o-prime and F~,~-minirnal over U ~ I N ~ .  

(7) tp .(  U {N~ : Tt < v E I}, N~) is orthogonal to N~r. when l(n)  = n + 1. 

PaOOF. We define by induction on n, a set I. of sequences of ordinals of 

length n, models, N~, M~ and elements a~ for each n ~ I. such that: 

(1) -q E I., m < n implies rt [ m E I.,, and Io = {( )}. 

(2) N, is F~,o-Saturated. 

(3) N< > is F~,o-prime (over ~ ) .  

(4) N~^<,> is F?,o-prime over N~ U {a ~^<,>}. 

(5) Let p~^,> = tp(a~^o>,N,), then it is regular, and p,^<~>, P~^<i> are equal or 

are orthogonal. 

(6) M~ is F~o-Saturated, N~ C_ M, C_ M. 

(7) n <~ v implies N. _C N~ C_ M~ _C M~. 

(8) Mr is F~o-prime over U,M,^,>.  
(9) N~^<,> < ~ M~^<,>. 
(10) {M~^<,>: r l^( i )~  I} is independent over N,. 
(11) A~ ={a,^<~>:~l^(i)EI} is a maximal subset of M, (or even set of 

sequences from M,)  independent over N,. 
(12) A~ is a maximal subset of M which is independent over N~ and every 

element of it realizes over N~ a type orthogonal to Uk<~<~N~rk if , /~  ( ). 
The definition is easy: for n = 0 trivial, for n + i, for each ~ E I. we apply 3.1 

with N~, M~ standing for N~, M and get a .  N2,~, M~ and let a~^<~>= a .  

N~̂ <~> = N2,~, M.^<~> = M~ (so I.+t is the set of ~,'s of length n + 1 for which N~ is 

defined). 

Let I = U . I . .  Now all the conditions of the lemma are obvious except " M  is 

F~-prime and F~-minimal over U ~ N ~ "  and (11), (12). 

Let us first prove (11), (12). If (11) or (12) fails for "0, let ti exemplify it; i.e. 

~iti~N~, tp (d ,N~) i s  orthogonal to N~,~_,  if k = l ( r l ) > 0 ,  and ~i~N~ and 
tp (~i,N~ O {a ~.<o: r/^(i) ~ I}) does not fork over N~ ; w.l.o.g, tp (~i,N,) is regular. 

As in the proof of 3.1, 

tp (ti, U{N~^<,> : r/^(i) @ I}) I- tp(a, U{M~^,> : rl ̂ (i) ~ I}), 
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and as M, is F~,o-prime over [,.J {M,,^~,~: -O ̂ (i) ~ I}, tp(~,l,.J~M,~^~,~) does not fork 
over N~, by V 3.2, 

t p ( &  U M~^~,,)~-tp(ti, M,~). 

This proves (11) (i.e., when ti E M,~); for (12) note that by the above t p ( a , M , )  
does not fork over N, ,  hence is the stationarization of tp(~i,N,,) which is 
orthogonal to N, rt,,,~-~) when it is defined. Let k = l(r/), and we now prove by 
induction on l < k that tp(ti, M,,,k-~) does not fork over N,.  

We have proved for l = 0 and for l + 1 notice that as tp(ti, M,  rtk-~)) does not 
fork over N,,, it is parallel to tp(ti, N,,), hence orthogonal to N,,ttk-1) 
hence to N,~r~k-~-~. So for j ~  ~ 7 ( k - l - l ) ,  tp(ti, M~rtk-~) is orthogonal to 

t p , ( M ,  r~k-t-l~^<j>, N~ r~-t-t~). 
As {M,rtk-t-t~^<j~:j<a} is independent  over N,~rtk-~-~), tp(ti, M~r~k-~) is 

orthogonal to tp,(I,.Jj,,,tk_~_l~ M,,rtk-H~^~j>, N,~rtk-H~), and 

tp(ti, M,~r,k_,,)~-tp(~i, U M~r,~-,-~,^,,~). 

So as M,tt~-H~ is F~,o-prime over I,.JiM,,r~_H~^~>, by IV 4.10(2), 

tp (ti, M,, rt~-~) I- tp (ti, M~ ~_~_~), 

so also the latter does not fork over N,,. For l = k we get a contradiction to 
ti ~ M = M~ >, as tp (ti, M< ~) does not fork over N, ,  and ti ~ N,~. 

Now we shall prove that M is F~,o-prime, F~,o-minimal over [..J,~N~. So 
suppose M' C M, M' ~ M, M' is F~pr ime  over [,.J,~N,,, and choose b ~ M - 
M', R[tp(b,M'),L,~] minimal, hence tp(b,M') is regular. Now tp(b ,M')  is 
orthogonal to each N,,. If not, choose ~7 with minimal length, then by 1.4 for 
some regular q ~ S "  (N,), tp(b,M') ,  q are not orthogonal and q =p, ,^~ for 
some i, or q is orthogonal to every p ~^~>. Let q' ~ Sm(M ') be the stationarization 
of q over M' ,  so by V 1.12 there is t i ' ~  M which realizes q', so tp(a',M') does 
not fork over N,,. By choice of r / (being of minimal length) (if rl ~ ( )) tp (b, M')  
is orthogonal to I,.J~<,~N,~E, hence by V 1.13 also tp ( t i ' ,M' )  is, so we get a 
contradiction to (12). We conclude tp(b, M')  is really orthogonal to each N~. 

Choose a finite B _C M'  over which tp(b ,M' )  does not fork, and a finite I* C_ I 
closed under initial segments such that t p . (B , I , . J~N~)  does not fork over 
U,~,. N,~. As M'  is F~0-prime over I,..J ~N,~ ,  tp .(B,  U ~ N , ~ ) i s  F~o-isolated, so 
t p . ( B , U , ~ . N , ~ )  is F~,o-isolated (see IV 4.3). Let N < M '  be F~,o-prime over 
I,.J{N~ :77 ~ I * }  and B C N. We have found an F~,o-prime model  N over 
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U , ~ , . N , ,  so that there is a regular type in S " ( N ) ,  orthogonal to each N~ 

(rl E I*), realized in M, and I* is finite, closed under initial segments. We get a 

contradiction to the statement in the last sentence by induction on I I*l .  If 

I* = {rl I l : l < n} this is trivial, and if not choose distinct 77, v in some I* n I. 
with n minimal. Let N O= N,~r(,-~>, N ' < N  be F~o-prime over U{N, , : r l  "< 

(r E I*} and N 2 C N be F~,o-prime over U{N,,: not r / ~ t r ,  but o- ~ I*} such that 

N is F~,0-prime over N ~ U N ~. Now by 2.3 (and as T does not have the dop) for 

some l ~{1,2}, there is a regular complete type over N ~ orthogonal to No, 

realized in M, and we get a contradiction to the induction hypothesis on I I* I. 

In fact our proofs also prove: 

3.3. LEMMA. Suppose I C_ ~>h is closed under initial segments, {N, : ~l E I} is a 

non-forking tree of F~-saturated models [i.e., 71 ~ ~ ~ N,  < Nv, 77 E I - { (  )} :~ 

tp(N~, U {N. : v ~ I, not 77 "< ~'}) does not fork over N,r(,n>-~), and each N~ is 
F~,,,-saturated ]. 

I f  T does not have the dop, M F~-prime over U n ~ N , ,  then M is F~-minimal 

over U n ~ N ,  and every q ~ SIn(M) is not orthogonal to some N, .  

PROOF. First note: 

3.3A. FACT. If S~, $2 are non-empty subsets of I which are downward 

closed, then { U ~ s ,  N~, U ~s~ Nv} is independent over U ~s, ns~ N~. 

PROOF. By the local properties of forking, it suffices to restrict ourselves first 

to the case S~ - $2 finite, then to the case S~ - $2, $2 - S~ finite, and at last S,,  $2 

finite (using III 0.1). 

Now we prove the statement by induction on I S~ U s2i ; w.l.o.g. S~ fi S~ n $2, 

S 2 ~ S ] n S 2 ,  c lear ly(  ) E S ~ A S 2 .  

So choose r~ E S, - $2 of maximal length, and by the induction hypothesis and 

transitivity of forking (see III 0.1) it is enough that tp . (N, ,  U {N, : v E S~ U 

$2, v #  r/}) does not fork over N,r,(,)-,), but this follows from the hypothesis. 

Now return to 3.3. 

If one of the conclusions fails we can reduce it to the case I = / *  is finite; then, 

as in 2.2, the two conclusions are equivalent. If both fail, there is M ' <  M, M '  

F~,o-prime over U ~ . N , ,  b E M - M ' ,  tp(b ,M')  orthogonal to every N, ; and 

continue as in the last part of the proof of 3.2: from the choice of B. 

w Deepness 

(Hyp) In this section T is superstable without the dop. 
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As we know that the number of non-isomorphic F~,o-saturated models in every 

Na _-> [ T [ + N1 for unsuperstable T and for T with the dop, we concentrate on the 

case in the hypothesis. By the decomposition Lemma 3.2 we know every 

F~,o-saturated model is F~o-prime over a non-forking tree of F~-prime 

models. Clearly, if there are few trees then there are few models, but the 

converse is less clear. Anyhow, clearly the most important distinction is whether 

the tree (I in 3.2) is always well-founded. If it is always well-founded, naturally 

some rank is defined (called here the depth), and if the rank is small the number 

of models is small. 
In this section we introduce the basic relevant notions and the simple facts 

about them. Notice that we could have chosen some other variants of the 

notions, but by later sections we will show that they would be equivalent. 

We define the depth so that the results on the number of models can be stated 

smoothly (this is why 4.1(iii), 4.2(1) are such that the depth is not a limit ordinal). 

Let us make some more specific remarks. Note that if the tree is not 

well-founded there are N, < N,+, N~+~ F~,o-prime over ~ U {a~ }, tp (a~, Nt) regular 

orthogonal to N H .  So the rank is defined as an attempt to build such a sequence 

(i.e., the rank of (N, N' ,  a )  is Do iff there is such a sequence, N = No, N '  = N~, a = 

ao). 

In Definitions 4.1 and 4.3 we give some variants of this, in 4.2 we define the 

relevant property of a theory (deepness), in 4.4 we prove various facts, and in 4.5 

the essential equivalence of some variants is given. Now 4.6 says that, looking for 

high depth, it is enough to look at types not orthogonal to 0 .  For "canonical" 

examples see 4.9, 4.10. 

4.1. DEFINITION. Let K" ={(N,N',a):tp(a,N) is regular, and N'  is Ff,,,- 

prime over N U {a}}. 

For every member of K" we define its depth, an ordinal (zero or successor but 

not limit) or infinity ~, by: 

(i) Dp(N,N' ,a)_->0 iff (N,N',d)~K'; 
(ii) Dp(N,N',d)>a+l (a zero or successor) iff for some N",~i': 

(N',N",d')EK', N'<NN" and Dp(N',N",~')>a; 
(iii) D p ( N , N ' , d ) >  6 +1  (8 limit) iff Dp(N,N ' ,~ i )> /3  for /3 < 8 ;  

(iv) Dp(N, N' ,  ~i) = oo iff for every ordinal/3 Dp(N, N',  d)  >/3, Dp(N, N',  d)  = 

a iff Dp(N,N',~)>a but not Dp(N,N',d)>a +1.  

4.2. DEFINITION. (1) The depth of the theory D p ( T )  is U{Dp(N,N',a): 
(N,N',a)EK'}+I. 

(2) The theory T is deep if its depth is oo; otherwise it is shallow. 



342 S. SHELAH Isr. J. Math. 

4.3. DEFINITION. (1) K~ ={(N,N ' ,~ ) :N,N '  are F~-saturated, ~ E N ' ,  
t i e  N, N'  F~-atomic over N t3 {ti}}. Dp((N,N' ,d) ,K)  is defined as in 4.1 for any 

set K of triples. If ( N , N ' , ~ ) ~ K  we interpret Dp((N,N' ,d) ,K)  as 

Dp(N,N' ,d ) ,K  U{(N,N',d)}) (not closing under isomorphism) and if K - - K  r 

we omit it. 

Let K~, = {(N, N', ti) ~ K~ : tp(& N) is regular}. 

(2) For a tree I, we define Dp~ (7, I)  (h a cardinal, 7/E I) :  Dp~ (7, I)  _-> a + 1 

iff for h v's, , / < v ,  Dp(v,I)>-_a, and for a = 0  or limit Dp~ (T/, I )  _--> a iff 

Dp~ (7, I)  _-> fl for every 13 < h. So Dp~ (,/, I)  = a if it is _-> a hut not _-> a + 1. Let 

Dp~(I) = sup{Dp~(T/,I): ~/E I}. For h = 1 we omit h. 

(3) Dp(T,K)  is defined as in 4.2. 

4.4. LEMMA. (1) If (N,N' ,d) ,  (N ' ,N" ,~ ' )EK,  N '<NN" then 

Dp ((N, N', ti), K)  _-> Dp ((N', N", ti'), K) (the inequality is strict except when both 
are oo) [this holds for any class K of triples]. 

(2) i f  a < D p ( ( N , N ' , d ) , K ) <  oo, ( N , N ' , a ) E K ,  a not limit, then some 

(No, N~, ao) ~ K has depth a (in K). 
(3) Dp(N,N ' ,  ti) = Do iff there are N~, d~ (! < ta), Nt+~ <~,N~+2, No = N, N~ = N', 

rio = ti, (Nl§ Nl+2, dr) E K r. (Similarly for any "reasonable" K.) 

(4) If tr = D p ( T )  or a = Dp(N,N' , t i ) ,  a <0% then a <(2tzl) + and in fact 
a < 8(I TI) (see below what is ~([ TI)). 

(5) The depth is presgrved by automorphisms of ~. 
(6) If (Nt, N~, ti~) E K;~ o (l = 0,1) and tp(ti~, N~) are parallel or not orthogonal, 

then Dp(No, N~, do) = Dp(Nt,  N[,  ~L). If only (N~, N~, ~ )  E K~o, tp(til, N~) reg- 
ular, still Dp(No, N', rio) < Dp(N~, N[,  tL). 

REMARK. Remember  that a~t~) is the Hanf number of omitting types for 

theories of power A, i.e., it is the first cardinal/z such that if T is a (first-order) 

theory of cardinality A, p a type of cardinality A, and T has a model omitting p in 

every X < #, then T has a model omitting p is every cardinality -->1TI. 

This is well investigated, e.g., {~(~0)=~1, h+_-<8(h)<(2x) +, cfh > ~ o ~  

a ( a ) >  a+; for proofs and references see, e.g., VII w 

The following lemma shows that there is no real difference between the 

various D p ( - , K ) ' s ,  in particular, whether we use a or ti. 

4.4A. DEFISITION. We let, for regular p, Dp(p) be the depth of (N,N' ,a)  
Ki, o when tp(ti, N), p are parallel. 

PROOF OF LEMMA 4.4. Easy. Note for (3) we need (6). 

(1) Trivial. 
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(2) We prove it by induction on/3 - Dp(N,N',ti); for/3 = a there is nothing 

to prove; for/3 > a ,  use 4.1 (ii) applied to Dp(N,N',d)>=/3 +1, to get N", a '  
p t !  - -  t ~ .  with 3" = Dp(N ,N ,a )= a, but by 4.4(1), 3,</3, and use the induction 

hypothesis. 

(4) By (6), Dp(N, N', d) depends only on tp(ti, N) up to parallelism, and by (5) 

it is preserved by automorphisms of 6, hence there are _-< 2 f T I possible depths. 

But by (2) the ordinals which are the depth of some triple form an initial segment 

of the set of the non-limit ordinals, hence 

a = Dp(N, N', d) < o0 =), a < (21 r I)+. 

The first phrase has been proved above. We work as in [4] VII w For the 

second phrase, let 23=(H(A),~,T,8(JTI)), H(X) - -  the family of sets of 
hereditary cardinality < h, and w.l.o.g. T C [ T [+. Now consider 23' elementarily 

equivalent to 23, with "T  and IT]" standard: but non-well-ordered "ordinals" 
< 8(T). (23' is known to exist.) 

In this model we can consider various notions and check whether they are 

absolute, i.e., whether if 23' says something holds it really holds. Now this holds 

for 

(a) being a model of T, 

(b) R (p, A, h ) = n (A finite, h -< ~Io), 

(c) being orthogonal types, 
(d) non-orthogonal types, 

(e) tp , (A,B)  does not fork over C, and 

(f) A CB, pES"(B);  p has a unique extension in S"(NUB)  when 

tp.(N, B) does not fork over A. 

We can conclude by 4.5 that also if 23'~ "Dp(p)=> a *, a * an ordinal" then p 

has depth => the order type of {a ~23":a <a*}. If a*_->~(JT[) this is not 
well-founded so Dp(p)= oo. 

(5) Trivial. 
t - < t - . (  (6) We prove by induction on 3, that [Dp(No, No, ao)= 3, or Dp(N~, N~, ao)_- 

3,] implies the equality. We can choose F"~-saturated N2, No U N~ C_ N2, and by 

4.4(5) w.l.o.g, tp(N't,N2) does not fork over ~ (for l = 0,1). By V 3.2, N~ is 

F~"-constructible over N2U ~i0, and let N; be F~-primary over N2U N~= 

N2 U N~ U ti0. In N'2 tp(tL , N2) is realized, so w.l.o.g, til E N;,  N~ _C N;,  N~ 

F~-prime over N2 U ~L and over N2 U N[ (and over N2 U rio and over N2 U N~). 

By symmetry it is enough to prove Dp(N0, N~, ti0)= Dp(N2, N~, rio), because 

checking the definition we can observe that Dp(N2,N;, rio)= Dp(N2, N'2,aO. 
Now the inequality =< is trivial (with the induction hypothesis for 3,) and for the 
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inequality _-> we have to replace parameters with others of the same type. For 
proving the second phrase act as before, observing that by the first phrase 

Dp(N1, N; ,  ci,) = Dp(N2, N; ,  Cio). 

(3) First suppose that there are Nj, ~ij, and let at = Dp(N~,Nt+l,~i~). By 4.4(1), 

at >-- a~+,, and if c~t~ 0% at > at+l. So if ao is ~ 0% then a~ (l < m) is a strictly 

decreasing sequence of ordinals, contradiction; so ao =oo, but ao = 

Dp(No,N~,ao) = Dp(N,N',d), so we have proved the "if" part of 4.4(3). 

Now suppose Dp(N, N', ~i) = oo. We define by induction on 1, Na+~, a~ such that 
N~+, is F~-saturated, Dp(N,N~+~,aj)=o% N~ <N,_I N~+, (when 1>0) .  So let 

No = N, N, = N', do = a. So the induction hypothesis holds. For l + 1 as 
Dp(N,  N~+l , a t ) =  oo, there are N~+2, a~+~ = (a~+2), such that (Nt+~ ,Nt+~, aj+2)E K', 
Dp(N~+~, N~+2, a~+l) _- (2 t r I)+, hence by 4.4(4), Dp(N~+~, N~+2, at+z) = oo. As we can 

carry the induction we have proved the "only if" part of 4.4(3). 

4.5. LEMMA. (1) For any (N,N ' ,a )~K,  

Dp((N,N',d),K~) = Dp(N,N' ,  ci). 

(2) If Ki={(N,N',a)EK~,o:N is F~o-atomic over NU{a}}, then on Ki, 
D p ( - , K ' ) ,  D p ( - , K i )  are equal. 

PROOF. (1) Remember that by III 4.22, if M is F~-saturated, M'  F~-prime 

over M t2 a, i< < A then M'  is F~,o-prime over M U ~i. So trivially by the 

definitions and 4.4(6) Dp((N, N', ~i), K~ ) => Dp(N, N', ~i). So it suffices to prove 
by induction on a that: 

(*) Dp((N,N',a),K~)>-a ~ Dp(N,N',cI)_-> a for(N,N',a)~K~. 

For a = 0, a limit and successor of limit this is trivial; for a =/3 + 1,/3 not 

limit, there is (N', N", a')  ~ K~, N'  < t~ N", and Dp((N', N", ~'), K~ ) >=/3, hence 
by the induction hypothesis Dp(N',  N", cV) => /3. Apply Lemma 3.1 for N',N" 
standing for N, ,M and get a~,N:.,, M~ (i < i(0)). By V Def. 3.2, Th. 3.2, w.l.o.g. 

N2., = M/ and i(0) is finite ( = w(dl, N)), and let 3/= Max,<,0)Dp(N',N2,~,a~) (so 

3/is not limit); clearly it suffices to prove 3' _->/3. Otherwise, as 3' is not limit there 
is (N", N*, d *) ~ K', N" < NN*, Dp(N", N*, d *) _-> ~/. As tp(d*, N") is regular, 

orthogonal to N', clearly as in the proof Of 3.1 (see Fact E) for some i < i(0) and 

regular q ~ S'(N2,~), tp(d *, N") and q are not orthogonal. Let c realize q, N~.~ be 

F~,o-prime over N~.~ U {c}. So by 4.4(6) 

(a) Dp(N", N*, ti *) = Dp(Nz.,, N'~, c). 

Now as q is not orthogonal to tp(ci *, N"), it is orthogonal to any regular 
complete type over N'  (as non-orthogonality is an equivalence relation among 
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regular types, see V 1.13) hence q is orthogonal to N'. Hence N2.~ <N, N' , ,  hence 
(by 4.4(1)) 

(b) Dp(N', N2.,, a,) > Dp(N2.,, N~.,, 6.). 

As Dp(N",N*,d*)>=3, by (a), (b), Dp(N, N2.,,a~)>% contradicting 7's 
definition. 

(2) Easy 

4.6. LEMMA. If (No,NA,do)EK;, o, tp(~io,No) is orthogonal to f~ and has 
depth < ~, then there is (N~ ,N'~ ,d~)E K;, o such that tp(dt, Nt) is not orthogonal 
to ~ and 

Dp(No, N~, do) < Op(N~, N;,  dl). 

4.6A. REMARK. So clearly for any complete type p, Dp(p) = Max{Dp(r): r a 

complete regular type not orthogonal to p}. 

PROOF. By 4.4(6), w.l.o.g. No and N~ are F~,o-prime over 0 .  Let B _C No be 

finite, such that tp(tio,No) does not fork over B. There is B' realizing the 

stationarization of stp,(B,O) over No, and let M' be F~,o-prime over No t3 B'. By 
1.7, M' is F~,o-prime over ~.  Hence by IV 4.18, No,M' are F~,o-prime over B,B'  
resp., hence there is an isomorphism from M' onto No taking B' to B. So there is 

a model N < No such that tp,(B, N) does not fork over O and No is F~,o-prime 

over N t3 B. Hence by V 3.9 there is a finite set J = {b, : i < n} _C No independent 
over N, of elements realizing regular types, such that No is F~,o-prime over N t3 J. 

By V 3.2 there are N* < No F~o-prime over N t.3 b,, such that No is F~,o-prime 

over I,.J~<, N*. As tp(~io,No) is orthogonal to O, is parallel to stp(tio,B), and 

tp.(B, N) does not fork over Q, by 1.1 tp(tio, No) is orthogonal to N. On the other 
hand, by 3.3 tp(tio, N) is not orthogonal to some N*, hence by 1.4 some regular 

q E S~(N *) is not orthogonal to tp(tio, No), so by V 1.13 it is orthogonal to N. 
Clearly Dp(N, N*, bt) > Dp(q) = Dp(No, N~, ~io) (see 4.4(1), 4.4(6) resp.) and 

tp(bt,N) is not orthogonal to O as it is not orthogonal to tp,(B,N) (because 
b~ E No, No F~,o-prime over N LI B, tp(B,N) does not fork over O). Now put 

(N1, S~, ~il) %f (N,S*~,bt). 

4.7. THEOREM. I~,o(N~, T) (the number of non-isomorphic F~,o-Saturated 
models of power N~) is at most 3t-1)+tDptr)~(lal 2J~j) for shallow T, so it is 
<'t*(m,(la 12'~J) : :l,tm)(la [)<~,2mr(la I) and if T is countable < a,o,([a [). 

PROOF. Immediate by 3.2, and the bounds on 5([ T I) (see e.g. VII 5.5 and 

5.5(2)). 



346 s.  S H E L A H  Isr. J. Math. 

4.8. EXAMPLE. A very natural example of a superstable T without the dop 

which is deep, is the following T:  Tdp = Th(o>to,/) when f(7/) is r/ if 71 = (  ), 

and T/r n if T/E ,+1 to. 

Notice that a model of Tdp consist of trees, exactly one with a root (i.e., 

f ( x )  = x), in which every element has infinitely many immediate predecessors 

(i.e., y 's  such that f ( y ) =  x). A similar example is T*p = Th(~>to, . . .  , P , , f , , - . . )  

where P, = "to, f,  is a partial function: f [ P , .  
Both theories are N0-stable, and by expanding a little we can get elimination of 

quantifiers. 

4.9. EXAMPLES. Examples of shallow theories can be obtained similarly to 

4.8; we prefer to use the T ~" from I I p .  22: the language consists just of the 

two-place relations Ei (i < a).  The axioms of T state: each E, is an equivalence 

relation, for i < L E~ refines Ej, moreover each Ej-equivalence class is the union 

of infinitely many distinct E~-equivalence classes. Also E, has infinitely many 

equivalence classes and each E~-equivalence class is infinite. It is not hard to 

check that Dp(N, N',  a) = i iff i = y when y < to, i = y + 1 otherwise, where 

y = min {j : there is b E N, bEja} (and 3' = a if there is no such j). 

4.10. CONCLUSION. For every ordinal/3, which is a positive natural number or 

a successor ordinal, for some T = T~, IT I --I/3 [, and for infinite a, I~,o(N~, T) = 

a. (I I)- 

PROOV. For/3 < to or/3 = a + 2 we use the previous example; for/3 = 6 + 1, 

6 limit, take the sum of models of T ~* (i < 6) with disjoint languages. The 

computation is easy, but it is a worthwhile exercise for the reader as we are 

proving in the paper that every shallow theory T is in some sense similar to 

Tt,ptr). Note also (see [5] and 5.5(2)). 

4.11. THEOREM. (1) I f  T is shallow, then IE~,o(T)<'%trrl). 

(2) I [ T  is deep, K1 the first beauti[ul cardinal >ITI, K0 the first beauti[ul 

cardinal, then Ko <= IE~,o( T) <= K L 

REMARK. So when I T I is big ( = greater than the first beautiful cardinal) the 

following is not yet proved. 

4.12. CONJECTURE. IE~,o(T) is <= 38~1rl) or is K- [or some beauti[ul cardinal 
T (superstable without the dop, of course). 

w Deep theories have many non-isomorphic models and trivial types 

(Hyp) In this section, T is superstable without the dop. 
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Clearly, if T is deep, we can construct trees like the one we get in 3.2, and try 

to prove that we get many models. The freedom we have is to determine various 

dimensions. So when a = N, this is easy. Generally notice that we have much 

less freedom than, e.g., in 2.5 (when proving that the dop implies there are many 

models). 

This section is dedicated to the proof of: 

5.1. THEOREM. I f  T is deep, A ( T ) ~  No, No < N~ then I~o(N~, T) = 2"~, i.e., T 
has 2"- non-isomorphic F~o-saturated models of cardinality N~. 

REMA~g. But the lemmas will be used for shallow theories. We shall 

concentrate on the case N~ > A (T), where A (T) is the first cardinal in which T is 

stable. 

5.2. DEFINITION. We call (N,,, a~ : r / E  I, v E I +) a representation if: 

(1) I is a tree with root ( ) o f  height =<o9, and we let 7/- be the unique 

predecessor of 77 for r / E  I - {( )} = I+ and I -  = {r/- : rl E I*}. 

(2) N( ~ is F;~,o-prime over 0 .  

(3) If 77 = v~- = v~, then p~, = tp(a ~,,N,~) is regular, and p~, ,p~ are equal or 

are orthogonal. If all p~ with v-=~7 are equal, q,, will denote their common 

value. 

(4) For ~ E I+, N,~ is F~0-prime over N~,,-)U {a,,}. 

(5) For 7/E 1-, {a~ : v- = rt} is independent over N~. 

(6) If 77 E / ,  r/- is defined then tp(a~, N, - )  is orthogonai to N,_. 

REMARI~. We shall write in short (N,, a~ : rt E I), though we do not need 

a< >, so a< > is any element of N< > or undefined. 

5.3. DEFINITION. We say (N,, a,, : rt E I) is an F-representation of M if it is a 

representation and M is F-primary over U,,~N,, .  If F = F;', o, we omit it. 

5.4. LEr~MA. Let (N,,  a~ : rl E I) be a representation, then : 

(1) tp( U {N~ : r/<~ v} U {N~ : not r I "~ v}) does not fork over N~-) (for ~1 E I*). 

(s For n E I+, tp , (U~, ,N. ,N,~)  is orthogonal to N , - .  

(3) For 7, v E I, p~, p~ are orthogonal or equal (and then ~-  = v-). 

(4) Each N~ is F~o-prime over 0 .  

(5) if M is F~,o-prime over U ~ N , ,  p E S " ( M )  is regular, then p is not 

orthogonal to some p' E S"'(N~) for some 77. 

(6) (N~, a~ : 17 E I) represent some model of power A (I) + Il l .  

(7) Dp(N~- ,N~ ,a , - )  is at least Dp(r/,I) (see 4.1). 

PROOF. As in the proof of 3.2, or easy using 3.3, 1.7. (1.7 is needed for (4).) 
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5.5. LEMMA. (1) Every F~~ model has a representation. 

(2) I f  (N~,a~:  77 E L) F~,,-represents M~, l = 0,1, F: Io-* I~ an isomorphism 

(for partially ordered sets so it preserves the level), F ' : U ~ , N ' ~ - * U ~ t ,  N~ is an 

elementary mapping, it maps N ~ onto N~t~ ) (equivalently, for each "q E I0, F '  [ N ~ 
l is an elementary mapping onto NFt~), D o m F ' =  U ~ o N ~  then Mo, M~ are 

isomorphic. 

(3) I f  in (2) F,F'  are not necessarily onto, then Mo can be elementarily 
embedded into M~. 

PROOF. (]) This is by 3.2 (and 5.4). 

(2),(3) Trivial. 

5.6. LEMMA. For fl > 0, (N~, d~ : ~l E I) F~~ an F~-saturated model 

iff for every T I ~ I, and regular p E S ~ (N~) orthogonal to N~ for some q 

S ~ (N , )  which is not orthogonal to p and for at least ~ ~'s, p, = q. 

PROOF. Easy by 5.4(5), and usual arguments. 

Let M be F~~ over U ,N~ ,  and suppose A C_ M, IA I< N~, p E S ( A  ) is 

omitted. Let tp(a ,M) be a stationarization of p over M; clearly w.l.o.g, p is 

stationary. By V 3.9 there are {a~ :i < n}, independent over M, realizing over it 

regular types such that tp(a ,M U {a~ :i < n}) is " " F,o-lSolated. w.l.o.g, tp(a,A U 

{a~ :i < n}) is isolated, and tp(a~,M) does not fork over A and tp(a , ,A)  is 

stationary. We now try to define by induction on i, b~ ~ M  realizing 
stp(a~,A U{b~ :j < i}). We have to fail for some i, so w.l.o.g, p is regular. 

By 5.4(4) p is not orthogonal to some regular q ~S(N~) ,  which is not 

orthogonal to some p~^~,), so we know p, p~^~) are not orthogonal. By V 2.3, 2.4, 
dim(p, M ) =  dim(p~^~,M), which is _-> N~ by hypothesis, so we finish. 

5.7. LEMMA. If T is deep, then for every tree I with root ( ) and height <= to, 

there is a representation (N~, a n : T I E I)  (in fact q~ is well defined for every ~ E I- ,  

i.e., p~^<,~ = q~). 

PROOF. Easy. 

By 4.4(3) there are F~0-saturated N~, N~+~ F~,0-prime over N~ U {a~}, tp(a~,N~) 

regular, N~+~ <~,N~+:. Complete the partial ordering of I to a well ordering and 

let {~/~ :i < i*} be a list of the members of I in increasing order. Let n( i )  = l(~/,) 

and m (i) be maximal such that ~/~ t i n ( i ) ~  {~/:j < i}, in fact ~/~ [m ( i ) =  ~/~,) (for 

i > 0). Now we define by induction on i an elementary mapping F~. Fo is the 

identity on No, F~ is an elementary mapping with domain Nm,), extending F~t, ) 

such that tp.(F~ (N,,)), U~<,F~ (N,t,))) does not fork over F~tn(Nmt,)). Let N~, = 

F~(N~,), a~, = F~(a,t,)), and the checking is easy. 
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REMARK. The following lemma will be needed during the proof of 5.1, so if 
the lemma does not make sense to the reader, it is recommended that he skip it 
and return when we use it. 

5.8. MAIN LEMMA. Suppose M t is represented by ~ '" (N, ,a~.  rl ~ L) for I =0,  I 
and F:  M"---~ M 1 is an elementary embedding. Suppose further that r l E L,, and 

S, C_ L,  IS, l=  < A(T), is closed downward (i.e., o- < v E S, ~ o E S,) and such 

that tp,(F(N~ U ~ , ,  NI~) does not fork over U ~cs Nl.. Suppose further that p is 
m 0 regular, p E S (N,), J = {v E I0: v- = 71, p~ = p, and there are > A(T), or E Io, 

o-  = v} has power > A(T). Then: 
* E  m 1 (1) There is v * = v * E S ,  and q ,  S (Nv;) (no connection to Definition 

5.2(3)) such that F(p), q* are not orthogonal (and p orthogonal to IV,. when 

or < v *). Now by 5.4(3), q * is the unique p ~ which is not orthogonal to F(p ), hence 

it does not depend on the particular choice of S, (but only on F I N,). 

(2) If for every CroEIo, 1{o EL , :o - -=o -o ,  p~ =p,,,,}l=>h > h ( T )  and v* is 
from (1), then Dp,(rt, Io)_- < Dp, O,*,L ). 

PROOF. (1) By II 4.2 there is Jo C_ J, 

IJol=< t ~  N; =<IS, I+A(T)<=A(T)+A(T)=,~(T)  

such that {F(a~):zEJ-.L~} is an independent set based on (F(N~)U 

U,~s,  N 1, U {F(a,) : z E Jo}, F(N~)). 
_ ~ " F(N~)U U~sNl~ ,  so that clearly Let M * C M  1 F,~,,-pnme over 

tp , (M*,U~t~N~.)  does not fork over U~sN~. .  So by the symmetry lemma 

tp , (U.~, ,NI . ,M *) does not fork over U.~sN~.. 
Now F(p)  is a type over F(N~) C_ M*, and let r E S"(M*) be the stationariza- 

lion of it. Let J* = {~, E L : u- ~ S,, t,E S,}. As for no v E J* does ~,-,pl. serve as 

~,*~, q* of (1), clearly, for every v E J*, q~ is orthogonal to r. By the definition of 

a representation, {a~: u E J*} is independent over U ~ s  N.. As tp,({a~: ~, E 
J*}~ M*) C t p ( U ~ ,  N,, M*) does not fork over U ~ s N , ,  clearly {a ~: u E J*} is 

independent over M*, and tp(a~,M*) is the stationarization of p~ for every 

u E J * .  As tp (a~ ,M *) is orthogonal to r for every u EJ*,  also 
tp,({al~: v EJ*} ,M*)  is orthogonal to r. Let 6 realize r. By V 3.2, 

( N ~ , M U { a ~ ' ~ ' E J * } ) F t P (  U u {al~: ~, } u ~ ) ,  tp,  U 1 1 , ~. N~ ,M E J* 
r E  J* uEJ*  

but by what we  said before tp,({aL~: u ~ J * } , M * ) F t p , ( { a ~ :  v E J * } , M *  U ~), 

hence t p , ( U ~ j . N ~ , M * ) F t p ( U ~ . N ~ . , M  * U e) hence t p , ( U ~ . N l ~ , M * ) ,  r 

are weakly orthogonal, hence orthogonal. If ~ - E J * ,  clearly {NI. ,M*U 
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U,~j.N' ,}  is independent over Nv-,  hence by 1.1 p'~ is orthogonal to M * U  

U,~ j .  NI,. So we can easily continue and get, eventually, that r is orthogonal to 

t p , (U ,~ , ,  N,, M*). 

Clearly w.l.o.g. M 1 is F~,o-prime over U , ~ , N ,  U M*, hence r has a unique 

extension in S ' ( M  I) and d im( F( p ) ,M*)= d im(F(p ) , Ml ) .  However  

(T) < I J I_- < dim(p, M ~ _-< dim(F(p),  M 1) = dim(F(p),  M*) 

<=IIM*II<<-A(T) + F(N~ U U N1, < ) t (T) ,  contradiction. 
7 ~ S  n 

Checking the proof we see that F(p)  is not orthogonal to some pl ,  u- ~ S,. So 

w.l.o.g, q,~ is like that and we know there is at most one p l  not orthogonal to 

F(p)  by 5.4(3). 

Before we continue to prove 5.8(2), we prove a sublemma which will do most 

of the work. 

5.9. SUBLEMMA. For every u E J (by 5.8's notation and assumptions) except 

<= )t (T) of them, there is ~r~ ~ {or E L : ~r- = u*~ ,p'~ = q *~} such that : 

(a) tp , (F(N~ U {NI~: not o'v < r}) does not fork over U,~s  Nl,. 

(b) {F(a~ is not independent over F ( N  ~ U U,~s  N1,. 
(c) tp,(F(U,_-, ,  N~), F(N~) U U,~s  NI~) and tp,({N~,: not o'~ ~ r}, F ( N  ~ U 

U , e s  NI,) are weakly orthogonal. 

(d) For every ~'o ~ Io, u < to, F(p~o) not orthogonal to pl, ,  implies o-~ < rl. 
(e) The mapping u ~ cr~ is one-to-one. 

PROOF OF 5.9. L e t J l = { o - E L : ~ r - = u ~ , p ~ = q , } . L e t  u ~ J - J o .  N o w b y  

V 3.1 there is J',C_J~, I Jl _ j l [  =< 1 such that {d~:o-EJ~} U {F(~'~)} is indepen- 

dent over F ( N  ~ U U ~ s N l ~ .  Now it is easy to see that {F(N~ U {NI~: r is not 

than a member of j1 _j~}} is independent over U , e s  N~,. If J1 = j i ,  by the 

definition of J we can get a contradiction as in the proof of (1). So let 
J l  - Jl~ = { ~ } .  

Now (a) (of 5.9) has already been proved (as j l  = j1 _ {~r~}) and (e) follows by 

V 3.1. Now (d) follows from (c) which is quite easy. Part (b) can be proved easily: 

by the definition of J, there is p E Io, p -  = u, dim{p ~ M')  > )t (T), hence F(p~ is 

* < p~, but if r ~ pl, o" E Jl ,  {F(a~), a~} are not orthogonal to some p~,, clearly u ,  

NI (p d, P o. are independent over F ( N  ~ U,~s,  ,), then by the parallel of (c), F _o, i 

orthogonal, so if (b) fails we get a contradiction. Alternatively use 5.10, 5.11. 

PROOF OF 5.8(2). (2) We prove by induction on a that Dp,  (rt, Ia)--> a im- 

plies Dp,  (u ~, I1) ___ a. For a = 0, a limit, this is trivial. For a =/3 + 1,/3 > 0, use 

5.9. In particular, for parts (d) and (e), and for a = 1, look at the proof of 5.9. 
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The following lemma is useful in the proof of 5.1 and interesting by itself. The 

lemma holds for stable T without the dop. 

5.10. LEMMA. Suppose D p ( N , N ' , d ) > 0 ,  p E S ' ( B )  stationary and parallel 

to tp(& N) (which is regular). If  I is an independent set of sequences realizing p, 5 
realizes p but tp(/7, B U U I) forks over B, then for some ~ E I, tp(/~, B U ~) forks 
over B. (Such p will be called trivial.) 

PROOF. W.l.o.g. B = INI, N F~,o-Saturated, I is finite and let I = {~i~ :l < n}. 

Suppose there is no such ?, i.e. {/7, d~} is independent over N for each I. Let M be 

F~,o-prime over N U I U/~. As I O/7 is finite by Definition V 3.2, Theorem V 

3.6(2), V 3.9(1) there is a finite set J _C M independent over N, of sequences 

realizing regular types, such that M is F~,0-prime over N O ,/. 

FACT. There is b* E I U {6} such that for no d E J, tp(b*, N U d)  forks over 

N. 

Otherwise there are d o E Jr, 6 ~  J, such that each of the pairs {d ~ d,} (l < n) 

and {b ~ b} is not independent over N. 

So for each l, tp(~i,,N U { d ~  n}) forks over N and tp(/~,N U {i:i, :l < n}) 

forks over N, so by V 1.14 tp(/~,N U{a~ l < n}) forks over N. By the choice of 

/~o, tp(/~o,X U/~) forks over N, hence by V 1.14 again tp(/~~ U{d~  < n}) 

forks over N. As J is independent /7~ E {ti~ l < n}, so let /7 ~  ti ~ So, by our 

choice, tp(/~,N U d ~ forks over N, and tp(ti~},N U ~i~) forks over N, hence by V 

1.14 tp(/~,NUtit) forks over N;  contradiction to the assumption "I,/7 is a 

counterexample" to 5.10. So we have proved the fact. 

Let J = {c~" l < m0}. As M is prime over N O Jr, there are N~ F~,o-prime over 

N U dr, such that N is F~,o-prime over U~<,~N~ (see V 3.2). Let N * <  M be 

F~,o-prime over N U/~*. As/7" realizes p (as all members of / U {/~} do), by 4.4(6) 

D(N, N*,/~*) > 0, hence there is a regular q * E S"  (N*) orthogonal to N, and let 

q be its stationarization over M. For each l < m0, {b *, d~} is independent over N 

(by the fact), hence by V 3.2 t p , ( N ,  N*) does not fork over N. Hence by 1.1 q * is 

orthogonal to N~. Hence q is orthogonal to each /V~. But as T has the 

dimensional order property q is not orthogonal to some 3/i. This contradiction 

proves the lemma. 

PROOF" OF THEOREM 5.1 FOR ~t~ > A (T). As T is a deep theory, by Lemma 

5.7 (and 4.5) there is a representation ( N ~ 1 7 6  "0 E I ~ such that I ~ = ~>~to, q, is 

defined. By adding more elements and models we can get a representation 

(N, , t i ,  : r / E I )  such that (the only role of I - I  ~ is to make the models 
F~,dsaturated): 
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(a) I" _C/, [ I I = N., and every element has _-> No immediate successors, and if 
a9 E I  ~ then [{v E l :  rl --~ v, v r ( / ( r / )+  1 )~  I~ No +A(T) ;  

(b) for every 77 E / ,  and regular p E S"  (N,), {~r E I - I ~ : p.  is not orthogonal 

to p} has cardinality _-> tt~. 
Now for each s ~ < ~t., we can find a set I, _C I such that: 

(~) (~:), ( ) E / , ,  I~ _C I and is downward closed, and ~ E I~, r t E I ~ -q # ( ), 
implies (s c) ~ rt, 

(p) for 7 / E I - I ~  ~ /E I f  iff ( ~ ) < 7 ,  and for some m, ~ 9 [ m E I f N I  ~ 

rt I'(m + 1)~  I", 

(~/) Dp,o((sr ~, 

(8) if rt E If N I ~ then {v C I, n 1": u- = rt-} has power tr 

For any S C_N~ let I s =  U,~sI,, and M s be the model represented by 
( N , , a ,  : 7 /~  IS). 

Suppose q< ) does not fork bver B C_ N< ), I B I < too, q< > I B is stationary. By 

VIII 1.2 w.l.o.g, all members of B are individual constants. Now it suffices to 
prove: 

if S, U C_N~,IS- Ut = I U -  SI = ~  
(,) 

then (M s, B ), ( M u, B) are not isomorphic. 

This is because we can find 2"o subsets S~ of h =N~ such that for i#  j, 
[S~-SjI=ISj-S~I=A, so by 5.4(6)[IMS, II=N~, and by (*), they are not 
isomorphic. 

PROOF OF (*). Suppose F is an isomorphism from M s onto M v. It is easy to 
find S, C I s, U,C_I", [S,l+[U,l=h(W)+~t~ such that 

(i) ( ) ~ U , , S , ,  

(ii) t p , ( F ( U , ~ s , N , ) ,  U , ~ , - N , )  does not fork over U ~ , , N , ,  

(iii) t p , (U ,~u ,  N,, F(U,~,,N,))  does not fork over F(U,~s, N,), 
(iv) r I -ES~,  r / ~ I "  implies r /CS~,  

(v) r/ E U,,  r /~  10 implies rl E U,.  

Remember  q( > = tp(a( ,) ,N(>) for any (s r E I ~ Now as F is the identity on B, 

q< ) is parallel to its image by F, F(q( 3. Remember  q( > is regular. 

Clearly {a ( , ) :~ES}  is a maximal set _CM ~, independent over N( >, of 

elements realizing q ( ) .  By the choice of S~, U, III 0.1 (see Def. III 4.4) 

{a ~ : ~  ~ U, ( ~ ) ~  U,} is an independent set over (U ,~o ,  N~ U U,~s ,  F(N,), B). 
(Remember  q< > does not fork over B.) All of the a<,> realize q< > [ B. Moreover, 

(a<,>:~U,(!~)~Ul) is (in M U) maximal independent over (Ue~t~,N,U 

Ur F(N,) ,  B)  since (a<,): ~ r ~ U) is maximal independent over N< ~. Similarly 
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{F(a<~>):~ES,(~)ff_S,} is a maximal set independent o v e r  (Ut]~uIN~I U 
U ~ s ,  F(N,), B) of elements of M u realizing q< > r B. As q< > is regular, of depth 

>0,  by 5.10 there is a one-to-one function h from Vo= {(~):~ E S,(s  S,} 
onto VI={(~:}:~:E U,(~:}~ Ul} such that the set {F(a<~>),a.u~>)} is not inde- 

pendent over ( U . ~ u , N .  U U . ~ s , F ( N . ) , B ) .  

As [ U I I + I S I I ~ N o + A ( T ) < N , , ,  and I V - S I = I S - V I = ~  for some 
E S, (~)~ S,, ~ ->_ oJ, h((~)) ~ (~), and let h((~)) = (~). By symmetry (as we can 

use F-l), ~ > ~. Now we apply the main lemma 5.8, and get a contradiction by 

part (2). Since Dp. . ( (~) , IS)=~ and Dp..((~'),IU)= ~, I s and I ~ are con- 

structed so that the conditions in 5.8(1) and 5.8(2) are satisfied. 

PROOF OF THEOREM 5.1 FOR N,~ = A (T) .  Let N,, a, be as in 4.4(3). Now as in 

5.7 we can find for ~ E I ~ -- ~>No an elementary mapping f~ such that (f, (N,<,~), 

f,(~t(,~-~): ~ ~ Io) is a representation. We can choose countable A, C_/'4, such 
that a, E A.+~, tp.(A,+~ ,N.) does not fork over A., tp.(A,+l ,A,)  is stationary 

and tp.(A.H, A, U {a.+~}) k tp(A,+~, N. U {a.+l}). 

We let A, -- f~ (A,~,)), let I s = U ~ s I ~  (S c_ A) (Is is defined as I~ 71 1 ~ for I~ as 

in the proof of 5.1 for N~ >A(T)  above) and let M s be F~,;prime over 

U ~ , ~ A , .  We have to prove the parallel of (*). Notice that if some regular type q 

over M s has dimension > N0, then it is not orthogonal to some tp(a , ,A,) .  

We leave the details to the reader. 

5.11. LEMMA. Let T be stable. 

(1) Suppose r~ E S"n(A~) for l = 0,1, ro parallel to r~, ro is stationary, regular 

and trivial, then so is rl. 

(2) Suppose r ~ S " ( A  ) is a (stationary) regular trivial type and {d,/~} is 

independent over A. Then for any g realizing r, tp(6, A U ti U/~) forks over A iff 

tp(~, A U d) forks over A or tp(~, A U/~) forks over A. 

(3) Suppose r ~ S" (A ) is stationary regular and trivial. For any ~ there are 

do,"" ,d,-~ ~ r(~) such that: {do,'" ",d,-~} is independent over A,  tp(d~,A U ~) 

forks over A for I < n, and n = w, (~, A ). So for any d ~ r(~), tp(d,A U ~i) forks 

over A iff tp(d, A U d~) forks over A for some l < n. 

(4) Suppose ro, r~ are stationary regular and not orthogonal. Then ro is trivial iff 

rl is trivial. 

(5) Suppose A C B, tp(d,B) does not fork over A,  r E S ~ ( B )  is stationary 

regular and trivial, not orthogonal to stp(6,A). Then for some e ~acl(A U d), 

e ~ aclA, stp(e, A) is r-simple of weight 1. In fact there are e o , " . ,  e,_~ as above, 

independent over A,  tp(d,A U{e~ :l < n}) orthogonal to r. If  stp(d,A) is semi- 

regular, stp(e,A) is regular. 
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(6) If for l = 0,1, p~ = stp(d~, A )  is not orthogonal to r, r a stationary regular 

trivial type, then po, p~ are not weakly orthogonal ; in fact p~ has an extension over 

A U do which forks over A. 

PROOF. (1) By the definition of parallel, r~ is stationary and by V 1.8(1), r~ is 

regular. Let AoUA~C_M, M F~-saturated, A > ( A o U A 0  and r2 be the 

stationarization of ro (and rl) over M. Clearly r2 is regular and stationary. 

Suppose r, is not trivial, then there are/~, a o , ' " , d .  ~ realizing rl, tp(b,A~U 

doU ""  U d,_ 0 forks over A1, but tp(/~,A~ U &.) does not fork over A~ for 

m < n. W.l.o.g. tp(/~^do ̂ -. .^d,_, ,M) does not fork over A , ,  and then clearly/~, 

d o , ' " ,  d,-i exemplify r2 is not trivial (use III 0.1). So tp(b,M U d o U . . .  U d,_~) 

forks over M, hence over Ao, and /~, do,.-.,d,_~ realizes r2 and ro _C rz. So by 

1.11, clearly tp( /~ ,AoUl)  forks over Ao where l=ro (M)U{do , ' " , d , -~} .  

Obviously for every 6 E M, tp(/~,Ao U 6) does not fork over Ao. 

So/~, I exemplify ro is not trivial (except that I is not independent, but this can 

be discarded by ro's regularity); contradiction, hence rl is trivial as required. 

(2) The implication ~ is trivial. So suppose ~ is a counterexample to the 

other direction. Let M be an F~-saturated model, A _C M, 

t p . (M,A  U d U/7 U ~) does not fork over A. By some application of III 0.1 

clearly {a,/7} is independent over M, tp(6, M U d) and tp(?, M U/~) do not fork 

over M, tp(6,M U d U/7) forks over M, and tp(?, M)  is a stationarization of r, 

hence by (1) is a stationary regular trivial type. So w.l.o.g. M = B. 

Let {d,, : m < n ~ be a maximal set of sequences realizing tp(?,M) independent 
over M such that tp(d,,, M U d) forks over M, and similarly let {~,, : m < n ~} be a 

maximal set of sequences realizing tp(~,M), independent over M, such that 

tp(&. ,MU/~)  forks over M. By V 3.9(1) n~  n l = w , ( b , M )  and 

w.l.o.g, tp(do ̂  ^ -  ""  d,,o_l,M U d) and tp(~o^.. .^e, ,_, ,M U/~) are F~-isolated. So 

clearly { d o , " ' ,  dno-i , go , ' ' ' ,  I~nl-1} is independent over M and 
tp(do ̂ .. .^ d,o_~ ̂  e-o ̂ --.^ g,,_,, M U d U/~) is F~-isolated. 

So let N be Fa-prime over M U d U b, { d o , " ' ,  d,,, 1, g o , ' " ,  (,,-~} _C N. By V 

3.11(1) w , ( d ^ b , M ) = w , ( & M ) + w , ( b , M ) ,  and {do, . . . ,d ,o_l ,g , , , . . - , ( ,_~ } is a 

maximal subset of r(N) independent over M. 

Now what about ~? ( realizes r E S " ( M ) ,  ~ depends on d^b (i.e., 

tp(~,M U d U/~) forks over M), hence by V 1.16(1) tp ( ( ,M U r(N)) forks over 

M, hence t p ( ~ , M U { d 0 U . . .  Ud,o_l U ~ o U " "  U~,,_~}) forks over M. By the 

definition of triviality, tp(6, M U ~ )  forks over M or tp(6, M U ~)  forks over M 

for some I. By symmetry, suppose the former. Clearly by V 3.1 {d,6} is not 

independent over M, a contradiction. 

(3) Let A C M, M F~,-saturated, t p . (M,A U d)  does not fork over A. By V 
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3.9 there are n, do , "  ", d,-, such that: d~ realizes the stationarization of r over M, 

n = w,(d,m)= w,(d,A), {do,'"-,d,_,} is independent over (M,A)  and each t71 

realizes r, and q~ --- tp(dt, M to d) forks over M, hence q, forks over A, hence for 

some /~, tp(d,, A U d U/~j) forks over A,/~; ~ M. 
The only property missing is tp(d~, A U ~i) forks over M. If this fails we get a 

contradiction to part (2) (with A, a, bt, d~ here standing for/~, d,/~, 6 there). 

(4) Left to the reader. 

(5) Let {d,,,..',d._~} be as in part (3) of the lemma (replacing A by B), 

I, = {d ~ r((S):tp(d,B U d~) forks over B}, 

and q~,, /~ be such that /~ ~ B, ~ q~, [d~, ~i,/~ ] and ~o~ (~, d,/~) fork over B. By II 

2.2(8) there are t?~ C A  to U It, and $~ such that for every d E / ~ ,  ~[d,d, bt] iff 
~Ot[d, tT~,/~], and w.l.o.g. (by increasing/~,tT~) 6~ is a concatanation of sequences 

from It. Let et E (S TM be defined by ~t ~El, E, (y, ~) 
(V~)[~, (.e, y,t~,)= ~0,(~, Z, 6,)]. 

By the last phrase in part (3), for every automorphism F of fS which is the 

identity over B t0 d, F maps I~ into some I,,. Hence et can have at most n 

possible images (varying F). Hence e~ is algebraic over B tO ti. 

Let, for i < l T I  +, f, he an elementary mapping with domain C = 

B U d U U~ (d~ U {e,} U ~), f,. I (A to d) = the identity, s t p . ~ ( C ) ,  U;,~, f/(C)) 

does not fork over A to d, and extend s tp . (C,A U d), and fo is the identity. 

By V 1.11, tp(f,(d,,),B Uf,(B)to U,d;) forks over A, hence by part (2) for 

some I tp~(aT,.),B Uf~(B) to~) ,  and by V 3.1 this l is unique, so by the 

indiscernibility, necessarily l =  m. 
As r is regular, for l >0 ,  tp(d,,B t3 U,,~,I , . )  does not fork over B, and easily 

tp(d,,BoU,,**(d,,~g,.~(e,~))) does not fork over B, hence tp(d~,Bto 

[..J,.,,, (d,,^ g,,^(e,,))U U,>of,(B U do^ 6o^(eo))) does not fork over B. Hence we 

can find an elementary mapping g, 

( ) D o m ( g ) = d U  U f, B to  U d,.^ c-~^ (e,.) , g l  U f~(BUdo^eo^(eo)) 

is the identity and stp.(Rang(g),U,f,(B U do ̂  ~o ̂  (eo))) extends 

stp.(Dom(g),  Ud]  (B U do^do^(eo))) and does not fork over U,f ,  (B U do~6o^(eo)) 
and {d,, : m < n}U{g(d, ,):O< m < n} is independent over B. 

As we noted above eo is algebraic over B U a, hence eo = g(eo) is algebraic 

over g(B U ~i) = B U g(d). 

Checking closed, we see that for any automorphism F of ~~ which is the 

identity over B U ~i U g(~), F(eo) = eo. So eo is definable over B U ~ to g(~i), say 

by 0(x,a,g(d), /~*)(/~* ~ B ) .  Let 
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def  

E(;, ,~ e,,, ; ,^e , )  = ~ x ) [ ~ ( x ,  ;,,. e,,. f, (/~'11 - ~,(x, ; , .  e, ,/, (5"))1 

holds for infinitely many i 's". 

By III 2.5, 1.7, E is a formula which is almost over A, and let e* = d~g(d)/E. 
Now exactly as in the proof of V 4.11, e * ~ A, tp(e *, A ) is r-semi-simple not 

orthogonal to r, and e * E a c l ( U f ~ ( B  U{eo}), but here any two of {f~(eo):i} 
depend on U,f.(B), hence w,(e*,A )= 1. 

The only point left is "e* E acl(A U d)", but for any i we know that (k large 

enough) e* E acl(U~L~(B U {e}) c acl(A U d U UjL~fj(B)) (because 

eoEacl(BUd); see above). As this is true for every i and ~ ( B ) : j }  is 

independent over A U d, clearly e* ~ acl(A U d). The rest is obvious. 

(6) Repeat the proof of (5). 
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